8 通道热电偶测量模块

T-4118

8 通道热电偶测量模块

DS01011001 V1.03 Date: 2012/05/03

产品用户手册

概述

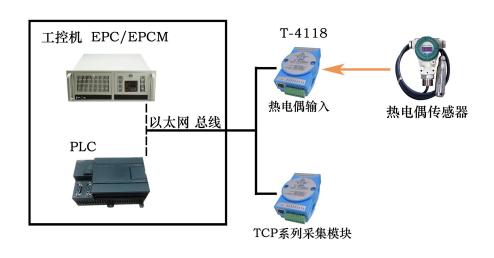
TCP 是泉州市凌力电子科技有限公司全新系列的基于 RJ-45 以太网通讯接口的数据采集模块。TCP 数据采集模块在单个设备中集成了 I/O、数据采集和隔离的 RJ-45 以太网通讯接口。支持标准的 Modbus/TCP 协议。

T-4118 可同时对 8 路的热电偶进行测量,且通道具有周期自校准功能;

T-4118 对输入输出端口采用电气隔离, 并采用带隔离的 RJ-45 总线接口及看门狗技术,有效保障设备安全可靠运行。

产品特性

- ◆ 32 位 ARM 处理器;
- ◆ 嵌入式实时操作系统:
- ◆ 输入通道: 8 路差分
- ◆ 输入类型: 热电偶、±100MV、±50MV、 ±20MV、±10MV、0-100MV、0-50MV、 0-20MV、0-10MV
- ◆ 采样速率:可设置,单通道最低 24 次/秒, 最高 240 次/秒
- ◆ 分辨率: 0.1℃
- ◆ 测温精度: 0.2%
- ◆ 电压精度: 0.2%
- ◆ 隔离耐压: 2500 VDC
- ◆ 工作温度: -35℃~+75℃
- ◆ 塑料外壳,标准 DIN 导轨安装。


一产品应用

工业现场温控系统 钢铁、冶金、化工 机械、制造、污水处理

一订购信息

型号 温度范围		封装	
T-4118	-35°C ~ +75°C	塑料外壳	

-典型应用

目 录

1.	T-41	18 功能简介	2
	1.1	主要技术指标	2
		1.1.1 热电偶输入	2
		1.1.2 系统参数	3
	1.2	原理框图	3
	1.3	端子信息	4
		1.3.1 端子排列	
		1.3.2 端子描述	4
	1.4	通信参数设置	4
	1.5	信号指示灯	5
		1.5.1 固件升级状态	5
		1.5.2 正常运行状态	5
	1.6	电源和通讯线的连接	5
		1.6.1 电源连接	5
		1.6.2 以太网连接	6
	1.7	机械规格	7
		1.7.1 机械尺寸	7
		1.7.2 安装方式	7
2.	T-41	18 热电偶测温功能	8
		热电偶简介	
	2.2	T-4118 测温原理	8
	2.3	热电偶接线方式	8
	2.4	数据类型	8
		2.4.1 ADC 数据类型	9
		2.4.2 有符号整型	9
		2.4.3 模拟量输出	9
		2.4.4 量程百分比	. 10
	2.5	测温通道控制	10
3.	T-41	18 应用示例	. 11
	3.1	安装设备	11
	3.2	操作设备	11
		3.2.1 TCP 系列模块通信参数的修改	11
		3.2.2 RJ-45 以太网以太网主机通信参数设置	. 12
		3.2.3 模块信息配置	. 12
		3.2.4 功能操作	15
4.	T-41	18 命令简析	.16
	4.1	MODBUS/TCP 协议命令结构	16
	4.2	MODBUS/TCP 命令码介绍	17
	4.3	TCP 资源地址说明	. 17
		4.3.1 T-4118 的资源地址	17
5.	免责	·声明	. 18
产	品用户	コ手册	

1. T-4118 功能简介

T-4118 是热电偶温度采集模块,具有 8 路测温通道,适用于采集工业现场的温度值。 T-4118 模块的外观如图 1.1 所示。

图 1.1 T-4118 外观示意图

1.1 主要技术指标

1.1.1 热电偶输入

◆ 通道路数: 8路

◆ 输入类型: 热电偶、电压

◆ 热电偶类型及测温范围:

J	-210~1200℃	R	-50~1768.1℃
K	-270~1372℃	S	-50~1768.1℃
Т	-270~400°C	В	250~1820℃
Е	-270~1000°C	N	-200~1300°C

◆ 电压量程: ±100MV、±50MV、±20MV、±10MV、

0-100MV \ 0-50MV \ 0-20MV \ 0-10MV

♦ 输入阻抗: 1.5MΩ

◆ 采样速率: 可设置,单通道最低 24 次/秒,最高 240 次/秒

→ 测温精度: 0.2%◆ 电压精度 0.2%

1.1.2 系统参数

◆ CPU: 32 位 RISC ARM◆ 操作系统: 实时操作系统

◆ 隔离耐压: 2500 VDC

◆ 供电电压: +10V~+30VDC, 电源反接保护

◆ 系统功耗: 1W@24V_{DC}

◆ 通信接口: 隔离 2500 VDC, ESD、过压、过流保护 ◆ 机械特性: 工业级塑料外壳;标准 DIN 导轨安装

◆ 环境特性: 工作温度(-35~75℃);

 \bullet ESD ± 6 KV

1.2 原理框图

T-4118 模块的原理框图如图 1.2 所示。模块主要由供电电路、A/D 转换电路、冷端补偿电路、数字量输出电路、RJ-45 以太网以太网隔离通讯接口以及 MCU 等组成。模块的微控制器采用 32 位 RISC 的 ARM 芯片,具有非常快速的数据处理能力,并采用了看门狗电路,可以在出现意外时将系统重新启动,使得系统稳定可靠。

T-4118 是针对工业应用而设计的,其内部输入输出单元与控制单元之间采用磁耦隔离,并对输入信号进行滤波处理,大大地降低了工业现场的干扰对模块正常运行的影响,使模块具有很高的可靠性,其带隔离的 RJ-45 以太网以太网通信接口,避免了工业现场信号对微控制器通讯接口的影响。模块具有很高的抗 ESD 打击能力以及过压、过流保护功能。

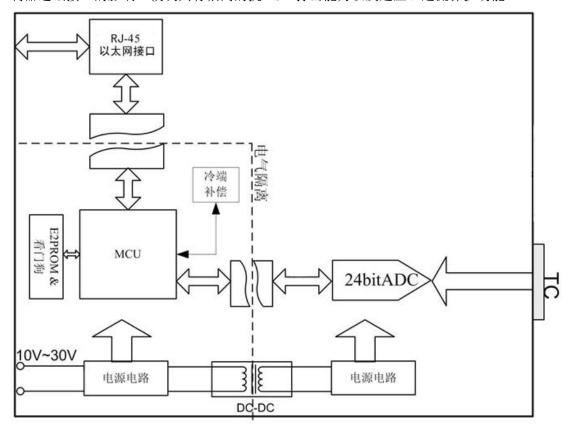


图 1.2 T-4118 原理框图

1.3 端子信息

1.3.1 端子排列

T-4118 共有 22 个端子, 壳体上端子排列如图 1.3 所示。

图 1.3 T-4118 端子排列

1.3.2 端子描述

T-4118 的端子说明如下:

- ◆ GND, +VIN 为模块的电源输入端, GND 接电源负端, +VIN 接电源正端;
- ◆ CFG 为模块的配置使能引脚,当此端子接地,模块将以默认的通信参数进行初始 化,并且通信参数可配置,否则以上次配置的通信参数初始化,且通信参数不可配 置:
- ◆ TC0±~TC7±为模块的 8 路热电偶接线端口,接线方式请参考2.3节;
- ◆ AGND 为不连接端子:
- ◆ CJ 为冷端补偿传感器。

1.4 通信参数设置

TCP 系列模块支持标准的 TCP-Modbus 协议。模块的通信参数如: IP 地址,子网掩码,网关,MAC 地址都可通过配置软件进行配置。通信参数都是保存在模块的 E²PROM 中,用户可以通过 RJ-45 以太网以太网接口进行远程软件配置。

要通过配置软件进行修改通信参数,用户首先需要知道该模块的参数配置。由于模块没有诸如拨码开关之类的硬件设置来指示此时的参数配置,可能会存在用户忘了某个 TCP 模块的通信参数的情况。为了解决此问题,每个 TCP 模块都有一个硬件使能输入端子 CFG。将此端子连接到 GND 后,给模块上电,模块的通信参数处于确定的状态:

- IP 地址: 192.168.1.30
- 子网掩码: 255.255.255.0

- 网关: 192.168.1.1
- MAC 地址: 00:04:a3:11:22:33

将CFG端子与GND短接,模块用以上确定的通信参数进行初始化,并不会改变E2PROM 中保存的配置参数。但只有在这个条件下,通信配置参数才可以进行修改,否则对通信参数 的配置命令都将回应异常响应。

通信参数修改后,必须把 CFG 端与 GND 断开连接后,给模块重上电,配置的通信参 数才生效。(完整步骤即断电,短接 CFG 跟 GND,上电,进入软件配置成功后,断电,断 开 CFG 跟 GND, 重新上电生效)

1.5 信号指示灯

TCP 系列模块具有两个指示灯, PWR 为电源指示灯(红色)和工作状态指示灯 MNS。 PWR 在模块内部,需要打开外壳才能看到,此灯亮,表示 TCP 模块供电正常。MNS 为红 绿双色指示灯,可以从外壳面板上看到,用于指示模块的工作状态。由于模块具有远程固件 升级的功能, 模块的正常运行后将选择进入固件升级状态或正常功能状态, 两种工作状态是 互相独立的,他们的指示灯状态不同。

1.5.1 固件升级状态

模块上电后先运行固件升级的程序代码,有固件升级要求条件时,将处于固件升级状态, 重新上电复位后,不满足升级条件才退出此状态。在固件升级状态中,MNS 指示灯状态如 表 1.1 所示。

MNS 指示灯状态	模块的工作及通信状态		
不亮	模块没有上电或没有运行		
红灯常亮	模块初始化出错		
红、绿灯交替闪烁,频率 1Hz	模块正常运行, 未与主机进行过通信		
红、绿灯交替闪烁, 频率 10Hz	己正常通信,建立连接		

表 1.1 固件升级状态下 MNS 指示灯状态

1.5.2 正常运行状态

模块上电后运行固件升级的程序代码,判断没有进入固件升级状态条件后,将进入正常 功能状态, 其 MNS 指示灯状态如表 1.2 所示。

表 1.2 正常功能状态 MNS 指示灯状态

模块的工作及通信状态

模块与主机已正常通信, 建立连接

MNS 指示灯状态 红灯亮 模块初始化出错 绿灯常亮 模块正常运行, 未与主机进行过通信

1.6 电源和通讯线的连接

绿灯闪烁,频率 3Hz

电源连接 1.6.1

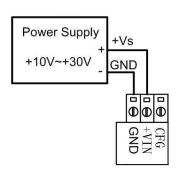


图 1.4 电源连接

1.6.2 以太网连接

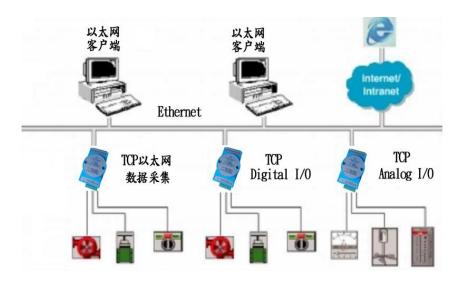


图 1.5 以太网连接

模块的电源连接如图 1.4 所示, RJ-45 以太网通讯线的连接如图 1.5 所示, 在接线时, 要注意:

模块的+VIN 引脚连接输入电源的正极性端, GND 引脚连接输入电源的负极性端, 连接时避免电源连接的极性错误。多个模块连接到同一个电源时, 所有的+VIN 引脚连接到电源正端, GND 引脚连接到电源负端。

用 RJ-45 连接器连接 T-4118 的连接器通过直连网线连接到 HUB 上,最大的通信长度支持 10M 和 100M 网速。任何一台 T-4118 到 Hub 之前的最长距离为 100 米。

1.7 机械规格

1.7.1 机械尺寸

TCP 系列数据采集模块采用塑料外壳,其外形尺寸如图 1.6 所示。

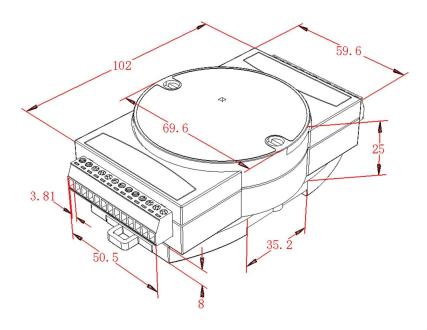


图 1.6 机械尺寸示意图

1.7.2 安装方式

TCP 系列数据模块外壳配有导轨底板,如图 1.7 所示,可以直接安装在标准的 DIN 导轨 (35mm 宽 D 型导轨)上,用户也可以采用其它的简便的安装方式。

图 1.7 导轨底板示意图

安装时, 先将 TCP 模块与导轨底板锁紧后, 将导轨底板钩住导轨的上边沿, 然后将底板上的红色卡座往下拉, 将模块底板贴紧导轨后, 松开红色卡座, 即把模块装在导轨上。

2. T-4118 热电偶测温功能

2.1 热电偶简介

很多过程控制场合,都需要对温度进行测量,因此温度传感器的使用非常广泛,热电偶就是其中之一。热电偶有着测温范围宽,反应速度快以及成本低廉的优势,使其在工业控制领域应用十分广泛。典型应用环境包括: 钢铁企业、冶金工业、活力发电、机械制造、污水处理以及化学化工等。

热电偶有两种不同类型的金属连接组成,连接点成为热端或测量端,非连接点为冷端。 热电偶工作机理为塞贝克效应,即两种不同金属连接在一起时,将在冷端产生一个热电势 V,其值为热端温度 T 的函数,数学表达形式为 V=f (T)。通过测量热电势 V,然后通过 V-T 函数的反函数 $T=f^{-1}(V)$ 就可以求出热端的温度。

目前热电偶有8种类型: J型、S型、T型、K型、R型、B型、N型、E型。不同类型的热电偶其材料不同,从而测温范围、灵敏度各不相同,用户应该根据实际应用的需要来选型。

2.2 T-4118 测温原理

T-4118 模块通过测量热电偶产生的热电势,并对热电势进行冷端补偿来求得热端热电势;通过热端热电势,从分度表中查找出其对应的热端温度值来实现温度的测量。

热电势首先通过抗混跌滤波器的处理,以防止采样后频谱的混跌; ADC 对滤波后的电压信号进行采样,然后传送给 MCU; MCU 将对此电压值进行冷端补偿,然后查找分度表获取热端的温度值。T-4118 前端测量电路的基本结构如图 2.1 所示。

图 2.1 前端电路

2.3 热电偶接线方式

T-4118 具有 8 路热电偶输入通道,其接线方式很简单,只需将热电偶正、负端分别接到模块某一输入通道的 TCi+和 TCi-上。通道 0 接法如图 2.2 所示。

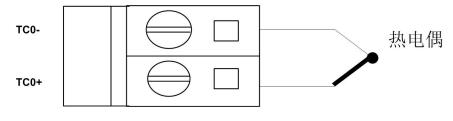


图 2.2 热电偶接线方式

2.4 数据类型

T-4118 将计算出来的温度转换成特定数据类型后存放于指定的 16 位寄存器中。RJ -45 主机可以通过命令读取指定通道的数据。用户可根据实际应用的要求通过配置软件对数据类型进行配置。

配置软件对数据类型寄存器写入数据类型代码来实现对数据类型的选择。类型代码和数据类型的对应关系如 表 2.1 所示。配置数据类型后,模块把温度值转换成设定的数据类型后存储在对应通道的寄存器中。配置软件对模块中的超限寄存器进行配置时,也需要将浮点类型的温度值转换成"ADC数据类型"后再发送给下位机的超限寄存器,转换公式如下:

$$X = 0x8000 + \frac{Alarm_Value}{FSR} \times 0X7FFF$$

注: Alarm_Value 为浮点温度值; X 强制类型转换为 16-bit 的数据后发送给下位机。

类型代码数据类型01ADC 数据类型02有符号整型03模拟量输出

04

量程百分比

表 2.1 AI 采样值数据类型设置

2.4.1 ADC 数据类型

类型代码为 01 时,表示模块数据为 ADC 数据类型,16 位有效数据,0x8000 为 0 值,0x8001~0xFFFF 表示采样值为正数,0~0x7FFF 表示采样值为负数。用户从模块读取数据后,需要使用如下转换公式转换后才能显示出温度值:

$$Data_display = \frac{(X - 0x8000) \times FSR}{0X7FFF}$$

其中 Data_display 为需要显示的数值; X 为从模块读取的数值; FSR 为满量程值。不同的热电偶, 其满量程值不同, 其对应关系如表 2.2 所示, 以下同。

热电偶类型	满量程值 FSR(°C)
J型	1200
S 型	1768
T 型	400
K型	1372
R 型	1768
B型	1820
N型	1300
E型	1000

表 2.2 热电偶量程对应表

2.4.2 有符号整型

类型代码为 02 时,表示模块数据为 16 位整型数据,采用补码方式。用户从模块读取数据后,需要使用如下转换公式转换后才能显示出温度值:

$$Data_display = \frac{X \times FSR}{0X7FFF}$$

其中 Data display 为需要显示的数值; X 为从模块读取的数值,当做有符号数来处理。

2.4.3 模拟量输出

类型代码为03时,T-4118模块将温度值乘以10后采用补码方式存储在指定的寄存器上。用户从模块读取数据后,需要使用如下转换公式转换后才能显示出温度值:

Data_display =
$$\frac{X}{10}$$

其中 Data display 为需要显示的数值; X 为从模块读取的数值, 当做有符号数来处理。

2.4.4 量程百分比

类型代码为 04 时,模块的数据为量程百分比类型。其值表示此时的采样值占的量程的百分比,单位为 0.01%。用户从模块读取数据后,需要使用如下转换公式转换后才能显示出温度值:

$$Data_display = \frac{X \times FSR}{10000}$$

其中 Data_display 为需要显示的数值; X 为从模块读取的数值, 当做有符号数来处理。

2.5 测温通道控制

T-4118 的 8 路热电偶测温通道可以独立地设置为使能或禁止。用户可以把没用到的通道 关闭来提高通道的整体采样速率。读取关闭通道的采样值,模块将回复当前数据格式下的 0 值。

通过配置软件配置的各通道上、下限报警值和通道控制状态(使能/禁止)都将保存在模块的 E²PROM 中,配置信息掉电后不会丢失。

3. T-4118 应用示例

3.1 安装设备

TCP 系列模块是基于 RJ-45 以太网接口的数据采集模块,将各个 TCP 功能模块进行组 网时,需要配备以下设备及工具:

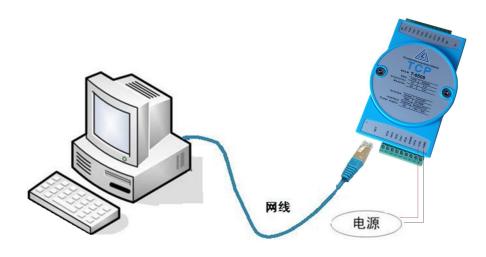


图 4.1 配置安装示意图

- TCP 数据采集模块:
- 带 RJ-45 以太网通讯接口的电脑:
- 供电电源(+10V~+30V);
- TCP 测试软件
- 网线

TCP 系列模块的通信参数是通过软件进行配置,并保存在模块内部的 E²PROM 中,在进行组网之前,需要获知每个 TCP 模块的通信参数,利用配置软件进行配置,保证同一网络里所有模块的 IP 地址、MAC 地址不冲突。

3.2 操作设备

3.2.1 TCP 系列模块通信参数的修改

TCP 系列模块的通信参数如: IP 地址、子网掩码和网关,MAC 地址都是保存在模块的 E²PROM 中,用户可以利用测试软件通过 RJ-45 以太网接口进行远程软件配置。

要通过测试软件修改通信参数,需要在模块上电之前,将硬件使能输入端子 CFG 连接到 GND,然后给模块上电,此时模块的通信参数处于确定的状态:

- IP 地址: 192.168.1.30
- 子网掩码: 255.255.255.0
- 网关: 192.168.1.1
- MAC 地址: 00:04:a3:11:22:33

由于同一网络中的模块地址需要唯一性,同一时刻只能有一个模块处于 CFG 状态,且没有其他的设备使用 IP 地址 192.168.1.30。将 CFG 端与 GND 短接后为模块上电,模块用以上确定的通信参数进行初始化,并不会改变 E²PROM 中保存的配置参数。且只有在这个条件下,通信配置参数才可以进行修改,否则对通信参数的配置命令都将回应异常响应。

通信参数修改后,必须把 CFG 端与 GND 断开连接后,给模块重上电或通过软件复位模块,配置的通信参数才生效。

建议单独连接要配置参数的模块,对模块进行配置后,再将模块连接到 RJ-45 以太网网络中。

3.2.2 RJ-45 以太网以太网主机通信参数设置

使用 PC 机连接好接线后,给 TCP 设备供电,在 PC 机上打开 TCP 测试软件,软件界面如图 $4.2~\mathrm{M}$ 示。

图 4.2 TCP 系列模块测试软件界面

用户可在配置软件上配置从机 IP (服务器),若配置不合理,在测试软件上点击"连接到以太网主机"将弹出连接到设备失败对话框,若配置成功,会提示连接到服务器成功,并显示连接型号。

3.2.3 模块信息配置

配置成功后,测试软件将根据实际的模块型号打开采集界面,如图 4.3 所示,

图 4.3 测试软件运行界面

1. 设备版本信息

设备版本信息包括设备型号、设备代码、硬件版本、固件版本。

2. 设备通信信息

设备通信信息为设备保存的通信参数以及一些公用的配置信息。设备在 CFG 脚不接或接高电平时,系统按这些通信参数进行通讯,在 CFG 接地时,设备以默认的通信参数运行,但是这些参数不受改变,在 CFG 脚不接地时模块恢复原来的参数。

修改设备通信参数信息后,需要点击"配置"按钮将通信参数信息保存在 TCP 模块内部。设备通信参数的修改需要模块模块满足硬件配置条件(模块在 CFG 端子接地时上电)下才能成功操作。点击"读取配置"按钮,测试软件将发送读取命令,从 TCP 模块获取当前的通信参数并更新软件界面。

3. 功能参数配置信息

TCP 模块的功能参数信息可通过点击"设备参数配置"按钮,弹出对应模块的设备功能参数对话框,进行参数的读取和配置,如图 4.4 所示。

图 4.4 功能参数配置界面

设备的功能参数配置信息包括设备支持的功能的配置参数,TCP系列模块中不同的功能模块,功能参数配置信息不同,在任何状态下都可以直接通过软件配置功能参数。

在测试软件上对设备功能配置参数进行修改后,需要点击"配置"按钮将配置参数保存在 TCP 模块内部。点击"更新配置参数"按钮可以更新功能配置参数,保持测试软件和设备的同步。

T-4118 模块具有冷端补偿功能,在功能参数配置中可以选择冷端补偿方式,如果选择为内部冷端补偿,将采用模块本身测量的冷端温度进行补偿;如果选择外部冷端补偿,配置窗口将会显示一个冷端温度输入框,用户可以输入外部冷端温度进行冷端补偿。例如,在外部冷端补偿时,输入外部冷端温度为0度,即表示不考虑传感器接触点的冷端温度。

功能参数配置对话框中,根据模块功能可能包括一些扩展功能操作。例如,T-4118 具有多种 AI 数据格式,在功能参数配置对话框中可以通过选择 AI 数据格式,再点击 "AI 数据格式配置"按钮执行对应的配置功能。扩展功能界面操作独立于功能配置参数配置操作,点击 "配置"按钮不会执行 AI 数据格式配置操作,但点击"更新配置参数"按钮将同步更新模块的 AI 数据格式。AI 数据格式需要在硬件条件满足时才能配置成功,硬件条件是指在 CFG 连接到 GND 时对模块上电。

3.2.4 功能操作

T-4118 具有 8 路热电偶输入通道在进行功能操作前,需要对功能参数进行正确的配置。 8 路 AI 通道可同时采样 8 路差分信号输入,其输入传感器类型可独立配置,并且可以独立控制通道采样的使能或禁止。

1. 模拟量输入

AI 通道的采样数据直接在数据采集区显示出来,测试软件提供单次的读操作,在不选择自动读取复选框时,点击"读取数据"按钮,即为单次读,将只进行采样数据单次读取操作。测试软件还提供自动读取操作,选择自动读取后,需要配置自动读取的间隔时间,然后点击"读取数据"按钮,测试软件将自动对采样数据进行循环读取。建议设定的自动读取间隔时间应该大于设定的超时时间,否则测试软件在一次未成功读取时,只有等到超时时间到了,才进行下一次读取操作。对于通道关闭的 AI 通道,将以最后一次采样值显示。读取采样数据操作,输入返回 AI 通道的采样数据。

T-4118 还将模块本身测试冷端温度显示采集界面中,可以方便用户了解模块当前的工作环境温度。

4. T-4118 命令简析

4.1 MODBUS/TCP协议命令结构

一个完整的 MODBUS/TCP 命令由命令头和命令体组成。命令头由六个字节构成,用来标识 MODBUS/TCP 命令协议,命令体决定目标设备和要进行操作的动作。命令定义如下:

字节 0: 事务标识符 一 由服务器拷贝

字节1: 事务标识符 一 由服务器拷贝

字节 2: 协议标识符 一 通常为 0

字节 3: 协议标识符 一 通常为 0

字节 4: 长度字域(高字节)=0(因为所有报文都小于256个字节)

字节5:长度字域(低字节)=后面的字节数

字节6: 单元标识符(即从站地址)

字节 7: MODBUS/TCP 功能码

字节 8: 所需数据的开始

例如读取 T-4118 从站地址为 1,寄存器地址为 40001 的内容,返回数值 6。请求命令如图 5.1 所示,响应命令如图 5.2 所示。

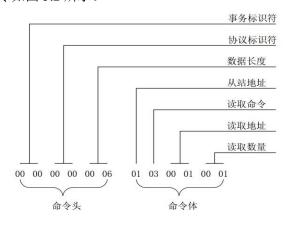


图 5.1 Modbus/TCP 请求命令结构

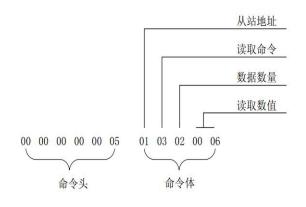


图 5.2 Modbus/TCP 响应帧结构

4.2 MODBUS/TCP 命令码介绍

表 5.1 是 Modbus/TCP 常用的命令码

表 5.1 Modbus/TCP 常用命令表

命令值	名称	说明		
01	读取位数	读取离散量的位值数据		
02	读取输入离散量	读取输入位值数据		
03	读取多个寄存器	读取寄存器的数据		
04	读取输入寄存器			
05	写入单个位值	设置单个位值得 ON/OFF 状态		
06	写入单一寄存器	写当寄存器的值		
15	加载多个位值	设置位值得 ON/OFF 状态		
16	写入多个寄存器	设置多个寄存器的值		

4.3 TCP 资源地址说明

4.3.1 T-4118 的资源地址

T-4118 模块具有 8 路的 TC 通道, 其 AI 资源地址以及它们在组态王中的使用如表 5.2 所示。

表 5.2 T-4118 资源地址

资源	端口号	说明	组态王寄	功能码	数据类型	范
地址			存器地址			围
64	通道 TC0	通道0的热电偶所测的温度	3065	04	有符号短整 型(short) (16 位)	
65	通道 TC1	通道1的热电偶所测的温度	3066			-32 768 ~+3 276 7
66	通道 TC2	通道2的热电偶所测的温度	3067			
67	通道 TC3	通道 3 的热电偶所测的温度	3068			
68	通道 TC4	通道 4 的热电偶所测的温度	3069			
69	通道 TC5	通道 5 的热电偶所测的温度	3070			
70	通道 TC6	通道 6 的热电偶所测的温度	3071			
71	通道 TC7	通道7的热电偶所测的温度	3072			

5. 免责声明

版权

本手册所陈述的产品文本及相关软件版权均属泉州市凌力电子科技有限公司所有,其产权受国家法律绝对保护,未经本公司授权,其它公司、单位、代理商及个人不得非法使用和拷贝,否则将受到国家法律的严厉制裁。

修改文档的权利

泉州市凌力电子科技有限公司保留任何时候在不事先声明的情况下对本手册的修改的权力。